Low-cost simulation of guided wave propagation in notched plate-like structures
نویسندگان
چکیده
The paper deals with the development of low-cost tools for fast computer simulation of guided wave propagation and diffraction in plate-like structures of variable thickness. It is focused on notched surface irregularities, which are the basic model for corrosion damages. Their detection and identification by means of active ultrasonic structural piezoelectric wafer active sensors as well as the use of laser Doppler vibrometry for surface wave scanning and visualization. To create a theoretical basis for these technologies, analytically based computer models of various complexity have been developed. The simplest models based on the Euler–Bernoulli beam and Kirchhoff plate equations have exhibited a sufficiently wide frequency range of reasonable coincidence with the results obtained within more complex integral equation based models. Being practically inexpensive, they allow one to carry out a fast parametric analysis revealing characteristic features of wave patterns that can be then made more exact using more complex models. In particular, the effect of resonance wave energy transmission through deep notches has been revealed within the plate model and then validated by the integral equation based calculations and experimental measurements. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Simulation of Wave Propagation over Coastal Structures Using WCSPH Method
In this paper a space-averaged Navier–Stokes approach was deployed to simulate the wave propagation over coastal structures. The developed model is based on the smoothed particle hydrodynamic (SPH) method which is a pure Lagrangian approach and can handle large deformations of the free surface with high accuracy. In this study, the large eddy simulation (LES) turbulent model was coupled with th...
متن کاملFree vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach
In this paper, wave propagation approach is used to analysis the free vibration and buckling analysis of the thick rectangular plates based on higher order shear deformation plate theory. From wave viewpoint, vibrations can be considered as traveling waves along structures. Waves propagate in a waveguide and reflect at the boundaries. It is assumed that the plate has two opposite edge simply su...
متن کاملStudy on Free Vibration and Wave Power Reflection in Functionally Graded Rectangular Plates using Wave Propagation Approach
In this paper, the wave propagation approach is presented to analyze the vibration and wave power reflection in FG rectangular plates based on the first order shear deformation plate theory. The wave propagation is one of the useful methods for analyzing the vibration of structures. This method gives the reflection and propagation matrices that are valuable for the analysis of mechanical energy...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملSimulation of static sinusoidal wave in deep water environment with complex boundary conditions using proposed SPH method
The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave forces on the structures body in different boundary conditions. In this study, the propagation of static ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015